Antisense 2'-O-alkyl oligoribonucleotides are efficient inhibitors of reverse transcription
نویسندگان
چکیده
Reverse transcription is one step of the retroviral development which can be inhibited by antisense oligonucleotides complementary to the RNA template. 2'-O-Alkyl oligoribonucleotides are of interest due to their nuclease resistance, and to the high stability of the hybrids they form with RNA. Oligonucleotides, either fully or partly modified with 2'-O-alkyl residues, were targeted to an RNA template to prevent cDNA synthesis by the Avian Myeloblastosis Virus reverse transcriptase (AMV RT). Fully-modified 2'-O-allyl 17mers were able to specifically block reverse transcription via an RNase H-independent mechanism, with efficiencies comparable to those observed with phosphodiester (PO) and phosphorothioate oligonucleotides. Sandwich 2'-O-alkyl/PO/2'-O-alkyl oligonucleotides, supposed to combine the properties of 2'-O-alkyl modifications (physical blocking of the RT) to those of the PO window (RNase H-mediated cleavage of the RNA) were quasi-stoichiometric inhibitors when adjacent to the primer, but remained without any effect when non-adjacent. They were not able to compete with the polymerase and inhibited reverse transcription only through RNase H-mediated cleavage of the target.
منابع مشابه
2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event.
We describe the synthesis of 2'-O-methyl, 2'-O-ethyl oligoribonucleotides and phosphorothioate oligodeoxyribonucleotides and demonstrate their utility as inhibitors of the in vitro U7 snRNP-dependent mRNA processing event. These 2'-O-modified compounds were designed to possess the binding affinity of an RNA molecule towards a complementary RNA target with an enhanced stability against nucleases...
متن کاملModified (PNA, 2'-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription.
Natural beta-phosphodiester 16mer and 15mer antisense oligonucleotides targeted against the HIV-1 and HIV-2 TAR RNAs respectively were previously described as sequence-specific inhibitors of in vitro retroviral reverse transcription. In this work, we tested chemically modified oligonucleotide analogues: alpha-phosphodiester, phosphorothioate, methylphosphonate, peptide nucleic acid or PNA, 2'- ...
متن کاملA genomic selection strategy to identify accessible and dimerization blocking targets in the 5'-UTR of HIV-1 RNA.
Defining target sites for antisense oligonucleotides in highly structured RNA is a non-trivial exercise that has received much attention. Here we describe a novel and simple method to generate a library composed of all 20mer oligoribonucleotides that are sense- and antisense to any given sequence or genome and apply the method to the highly structured HIV-1 leader RNA. Oligoribonucleotides that...
متن کاملAntisense-Mediated Depletion Reveals Essential and Specific Functions of MicroRNAs in Drosophila Development
MicroRNAs are small noncoding RNAs that control gene function posttranscriptionally through mRNA degradation or translational inhibition. Much has been learned about the processing and mechanism of action of microRNAs, but little is known about their biological function. Here, we demonstrate that injection of 2'O-methyl antisense oligoribonucleotides into early Drosophila embryos leads to speci...
متن کاملInteractions of 2’-O-methyl oligoribonucleotides with the RNA models of the 30S subunit A-site
Synthetic oligonucleotides targeting functional regions of the prokaryotic rRNA could be promising antimicrobial agents. Indeed, such oligonucleotides were proven to inhibit bacterial growth. 2'-O-methylated (2'-O-Me) oligoribonucleotides with a sequence complementary to the decoding site in 16S rRNA were reported as inhibitors of bacterial translation. However, the binding mode and structures ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 23 1 شماره
صفحات -
تاریخ انتشار 1995